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What is GW

Materials:
InSb, InAs
Ge 
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF

DFT

                           GW

The “GW” method is an accurate approach 
for simulate the “excited state” properties 
of materials. Examples:

- What happens when you add or 
remove an electron from a system

- How do electrons behave when you 
apply a voltage

- How does the system respond to light 
or x-rays

GW is complementary to the widely used 
density functionally theory methods (DFT) 
which predict ground state properties of 
materials - i.e. the properties of the system 
associated with all particles in the lowest 
energy configuration.



What is GW

Many-body effects extremely important in Excited-State 
properties of Complex Materials.  

Accurately describes properties important for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

 
            

*C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie. PRL 077402 (2004)
*J. Deslippe, C.D. Spataru, D. Prendergast, S.G Louie. Nano Letters.  7 1626 (2007)



Original BerkeleyGW Code - Massively Parallel. But MPI Only

Original code was MPI only. But, unlike DFT there 
are many layers over which you can exploit 
parallelism:

Band-pairs: (n,n’)   Millions
Energies: E   Tens-Hundreds
Plane-Wave Basis Elements: (G,G’)  - Millions

Much better suited exploiting levels of parallelism on 
HPC system like Cori. ~10,000 Nodes, 250 Threads 
per Node, 8 Wide Vectors.



Don’t Bury the Lead 

BerkeleyGW Running Well on KNL.

Data From Sigma Benzene Runs on Single Node - Excluding IO.



Computational Bottlenecks

3 Main Computational Bottlenecks. Use roughly equal time for 500 atom systems. 

A. Compute transition probabilities (matrix-elements) for electrons from occupied to empty orbitals

B. Sum matrix-elements to form the overall material response function (polarizability)

C. Calculate the interacting electron energy from the polarizability



Kernel A

Compute the transition probability between two electron states (orbitals):

Typically computed by FFT:

Must be done for all pairs of orbitals n, n’. Since the number of orbitals considered is proportional to number 
of atoms in calculation. The complexity of this step is O(N3logN).

We distribute (n, n’) via MPI and call threaded 3D FFT libraries (MKL) in the app. (Note, significantly more 
parallelism than local DFT)



Kernel A Performance (MKL)



Related Improvements in Quantum ESPRESSO

When performing Hybrid Functional calculations within 
DFT, like within GW, you need to perform an FFT for 
each pair of orbitals. 

By default, code parallelizes each individual FFT. 

We improve code to:

1. Parallelize over pairs of orbitals, before 
parallelizing individual FFTs

2. Allow simultaneous parallelism over orbitals for 
Hybrid calculation and other parameters for local 
calculation. 

This leads to less communication, more work (complete 
3D-FFT) on-node to parallelize.

Optimized QE on NERSC Edison



Kernel B

We want to compute the electronic polarizability of the system:

We can write this as a number of ZGEMM operations (one for each E):

Where M is:

There are two steps. First, constructing M, and second, performing the complex double-precision ZGEMM.

The complexity of this step is O(N4).



Kernel B Performance

Little difference between MCDRAM and HBM 
performance - Only in the initialization/prep stage. 

KNL overall performing 20% faster than Haswell. 

No advantage of Hyper-Threading on Xeon or KNL 
seen.



Kernel C

Compute the electronic energy as:

Here ῶ and ᶑ are complex double precision arrays derived from the polarizability. This is a tensor-
contraction, matrix reduction type operation - performed by hand tuned code.

The complexity of this step for all n is O(N4). 



Kernel C Optimization

Kernel COptimization process for Kernel-C (Sigma 
code):

1. Refactor (3 Loops for MPI, OpenMP, 
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering, 

conditional removal)
4. Cache-Blocking
5. Improved Vectorization
6. Hyper-threading



Kernel C Optimization



Steps 2-3

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for 
vectorization. 

Original inner loop. 
Too small to 
vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.

!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown
    ...
    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff
        ...
        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
        scht = scht + scha(ig)

      enddo ! loop over g
      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo   

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo



Data Locality Worse Between Step 2 - 3 on KNL/KNC

The loss of L3 on MIC makes locality more important.

Optimization process for Kernel-C (Sigma 
code):

1. Refactor (3 Loops for MPI, OpenMP, 
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering, 

conditional removal)
4. Cache-Blocking
5. Improved Vectorization
6. Hyper-threading



Why AI Lower on KNL?

  !$OMP DO

  do my_igp = 1, ngpown 

           do iw = 1 , 3

                do ig = 1, igmax

                     load wtilde_array(ig,my_igp) 819 MB, 512KB per row

                     load aqsntemp(ig,n1) 256 MB, 512KB per row

                     load I_eps_array(ig,my_igp) 819 MB, 512KB per row

                     do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on 
KNC and Haswell. But, Haswell has L3 to 
catch us.



Why AI Lower on KNL?

  !$OMP DO

  do my_igp = 1, ngpown 

      do igbeg = 1, igmax, igblk

           do iw = 1 , 3

                do ig = igbeg, min(igbeg + igblk,igmax)

                     load wtilde_array(ig,my_igp) 819 MB, 512KB per row

                     load aqsntemp(ig,n1) 256 MB, 512KB per row

                     load I_eps_array(ig,my_igp) 819 MB, 512KB per row

                     do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on 
KNC and Haswell. But, Haswell has L3 to 
catch us.



Kernel C Optimization



SDE + Vtune, Why Complex Divides so Slow?

Found ~ 2x Instruction reduction from AVX to AVX512

However, found significant x87 instructions  from 1/complex_number

Can significantly speed up by 

a) Doing complex divide manually

Or 

b) Using -fp-model fast=2



Additional Speedups from Hyperthreading



Kernel C Thread Scaling

KNL DDR performance saturates 
at around 50 threads, becomes 
memory bandwidth limited.

KNL MCDRAM performance beats 
dual socket Haswell by 63%. 



Conclusions

Kernel A - FFTs show moderate speedups over dual-socket Haswell.  Kernel B - ZGEMM and 
stream like operations show big speedups over Haswell

Kernel C - Hand tuned matrix reduction operations show 60% speedup over haswell. 

For algorithms with AI near roofline APEX (1-10), there is a rich optimization space that needs to 
be explored. Need all of:

• Thread scaling
• Vectorization
• Cache-Reuse
• Effective use of MCDRAM

Targeting Many-Core greatly helps performance back on Xeon.



The End (Extra Slides)



GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide variety of systems.

Accurately describes dielectric screening important in excited state properties.

Prohibitively slow for large systems.  Usually thought to cost orders of magnitude more 
time that DFT.

Memory intensive and scales badly.  Exhausted by storage of the dielectric matrix and 
wavefunctions.  Limited ~50 atoms.
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BerkeleyGW Towards Many-Core

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 
each MPI task has a memory overhead.

★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with 
enough memory.  90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…


